Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 3 - Classification/Naive Bayes/[R] Naive Bayes.ipynb
1009 views
Kernel: R

Naive Bayes

Data preprocessing

# Importing the dataset dataset = read.csv('Social_Network_Ads.csv') dataset = dataset[3:5]
head(dataset, 10)
# Encoding the target feature as factor dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1))
# Splitting the dataset into the Training set and Test set # install.packages('caTools') library(caTools) set.seed(1234) split = sample.split(dataset$Purchased, SplitRatio = 0.80) training_set = subset(dataset, split == TRUE) test_set = subset(dataset, split == FALSE)
head(training_set, 10)
head(test_set, 10)
# Feature Scaling training_set[-3] = scale(training_set[-3]) test_set[-3] = scale(test_set[-3])
head(training_set, 10)
head(test_set, 10)

Fitting Naive Bayes classifier to the Training set

library(e1071) classifier = naiveBayes(x = training_set[-3], y = training_set$Purchased)

Predicting the Test set results

y_pred = predict(classifier, newdata = test_set[-3])
head(y_pred, 10)
head(test_set[3], 10)

Making the Confusion Matrix

cm = table(test_set[, 3], y_pred) cm
y_pred 0 1 0 48 3 1 6 23

classifier made 48 + 23 = 71 correct prediction and 6 + 3 = 9 incoreect predictions.


Visualising the Training set results

library(ElemStatLearn) set = training_set X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) grid_set = expand.grid(X1, X2) colnames(grid_set) = c('Age', 'EstimatedSalary') y_grid = predict(classifier, newdata = grid_set) plot(set[, -3], main = 'Naive Bayes (Training set)', xlab = 'Age', ylab = 'Estimated Salary', xlim = range(X1), ylim = range(X2)) contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato')) points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'), col='white') legend("topright", legend = c("0", "1"), pch = 16, col = c('red3', 'green4'))
Image in a Jupyter notebook

Visualising the Test set results

library(ElemStatLearn) set = test_set X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) grid_set = expand.grid(X1, X2) colnames(grid_set) = c('Age', 'EstimatedSalary') y_grid = predict(classifier, newdata = grid_set) plot(set[, -3], main = 'Naive Bayes (Test set)', xlab = 'Age', ylab = 'Estimated Salary', xlim = range(X1), ylim = range(X2)) contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato')) points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'), col='white') legend("topright", legend = c("0", "1"), pch = 16, col = c('red3', 'green4'))
Image in a Jupyter notebook

Naive Bayes is another non-linear classifier. It works on the principle of Bayes theorem.

Here we can see that we got a pretty good classifier with very fewer incorrect predictions. Though no classifier is 100% correct.

Every classifier is wrong , but some are useful.